UP Board Class 10 maths Paper set 822 (AV) solution 1(e)
1. (e) In figure, O is the
centre of circle. If ∠ BAO = 25° and ∠ BCO = 20° then the measure of ∠ADC will be
(i). 20°
(ii) 25°
(ii) 25°
(iii) 45°
(iv) 90°
Solution: Answer (iii) 45°
In English
In the given ∠BAO = 25°
In the given ∠BAO = 25°
and ∠OCB = 20°
Let ∠AOC = x°
∠ABC = 1/2 ✕ ∠ AOC (angle is the remaining part of the circle)
= 1/2 ✕ x =(1/2)x
ext ∠AOC =360°− ∠AOC ( angle at a point )
=(360− x)°
In Quadrilateral AOCB
We know that Sum of angles of a quadrilateral is 360°
∠BAO +∠ABC +ext ∠AOC + ∠OCB = 360°
25° + (1/2) x + (360− x)°+ 20°= 360°
405° − (1/2) x = 360°
(1/2) x = 405° − 360°
x = 90°
∠AOC = x° = 90°
∠ABC = 1/2 ✕ ∠ AOC = 1/2 ✕ 90°= 45°
∠ADC =∠ABC = 45° ( angle in same segment)
∠ADC = 45°
In Hindi
1 (e).fp= esa] o`Rr dk dsUnz O gSA ;fn ∠ BAO = 25° rFkk ∠ BCO = 20° rks ∠ADC-
dh eki gksxh
Solution: ज्ञात है ∠BAO = 25°
405° − (1/2) x = 360°
(1/2) x = 405° − 360°
x = 90°
∠AOC = x° = 90°
∠ABC = 1/2 ✕ ∠ AOC = 1/2 ✕ 90°= 45°
∠ADC =∠ABC = 45° ( angle in same segment)
∠ADC = 45°
In Hindi
1 (e).fp= esa] o`Rr dk dsUnz O gSA ;fn ∠
Solution: ज्ञात है ∠BAO = 25°
और ∠OCB = 20°
ekuk ∠AOC = x°
∠ABC = 1/2 ✕ ∠ AOC (,dkUrj [k.M ds fdlh ,d fcUnq ij
vkUrfjr dks.k)
= 1/2 ✕ x =(1/2)x
ext ∠AOC =360°− ∠AOC (,d fcUnq ij vkUrfjr dks.k) )
=(360− x)°
prqHkqZt AOCB esa
ge tkurs gS fd prqHkqZt ds lHkh vUr%dks.kksa dk ;ksx 360 gksrk gSA
∠BAO +∠ABC +ext ∠AOC + ∠OCB = 360°
25° + (1/2) x + (360− x)°+ 20°= 360°
405° − (1/2) x = 360°
(1/2) x = 405° − 360°
x = 90°
∠AOC = x° = 90°
∠ABC = 1/2 ✕ ∠ AOC = 1/2 ✕ 90°= 45°
∠ADC =∠ABC = 45° ( ,d gh o`Rr[k.M ds cjkcj dks.k)
∠ADC = 45°
405° − (1/2) x = 360°
(1/2) x = 405° − 360°
x = 90°
∠AOC = x° = 90°
∠ABC = 1/2 ✕ ∠ AOC = 1/2 ✕ 90°= 45°
∠ADC =∠ABC = 45° ( ,d gh o`Rr[k.M ds cjkcj dks.k)
∠ADC = 45°
Comments
Post a Comment