Algebraic Identites
Formulae for binomial
1. (a + b)2 = a2 + 2ab + b2
Proof : Taking L.H.S
(a + b)2= (a + b) . (a
+ b)
= a (a + b ) + b (a +
b)
= a2 + ab
+ ab + b2
(a + b)2 = a2 + 2ab + b2 …….. (i)
2. (a – b)2 = a2 – 2ab + b2
Proof : Putting b = – b in equn (i)
(a – b)2 = a2 + 2a(–b) + (– b)2
(a – b)2 = a2 – 2ab
+ b2
3.
a2 – b2 = (a + b) . (a –
b)
Proof : Taking R.H.S
(a + b) . (a – b) = a (a – b) + b (a –
b)
= a2
– ab + ab – b2
= a2
– b2
4. (a + b)3 = a3 + b3 + 3ab (a + b) = a3 + b3 + 3a2b + 3ab2
Proof : Taking L.H.S
(a + b)3= (a + b) . (a + b)2
= (a + b) . (a2 + 2ab + b2)
= a (a2 + 2ab + b2) + b (a2 + 2ab + b2)
= a3 + 2a2b
+ ab2 + a2b + 2ab2
+ b3
= a3 + 3a2b + 3ab2
+ b3
(a + b)3= a3
+ b3 + 3a2b + 3ab2 = a3 + b3
+ 3ab (a + b)..(ii)
5.
(a – b)3 = a3 – b3
– 3ab (a – b) = a3 – b3 – 3a2b + 3ab2
Proof : Putting b = – b in
equation (ii)
(a – b)3 = a3 +(–
b)3 + 3a(–b) [a +(– b)]
(a – b)3 = a3 – b3
– 3ab (a – b) = a3 – b3 – 3a2b + 3ab2.....(iii)
6. (a3 + b3) = (a + b)(a2 – ab + b2)
Proof : From (ii)
(a + b)3 = a3 + b3 + 3ab (a + b)
(a + b)3 – 3ab
(a + b)= a3 + b3
a3 + b3 = (a + b)3 – 3ab (a + b)
= (a + b) [(a + b)2
– 3ab]
= (a + b) [ a2
+ 2ab + b2 – 3ab]
(a3 + b3) = (a + b)
( a2 – ab + b2)
7.
(a3 –
b3) = (a – b)(a2
+ ab + b2)
Proof : From (iii)
(a – b)3 = a3 – b3 – 3ab (a – b)
(a – b)3 + 3ab
(a – b)= a3 – b3
a3 – b3 = (a – b)3 + 3ab (a – b)
= (a – b) [(a – b)2
+ 3ab]
= (a – b) [ a2
– 2ab + b2 + 3ab]
(a3
– b3) = (a – b) ( a2 + ab + b2)
formula for Trinomial
8.
(a + b + c)2 = a2 + b2
+ c2 + 2ab + 2bc + 2ca
Proof : Taking L.H.S
(a + b + c)2 = (a +
b)2 + c2 + 2 (a + b) . c
= a2 +
2ab + b2 + c2 + 2ac + 2bc
(a + b + c)2 = a2
+ b2 + c2 + 2ab + 2bc + 2ca
9. (a3 + b3 + c3 –
3abc) = (a + b + c)(a2 + b2 + c2 – ab – bc –
ca)
Proof: Taking L.H.S
(a3 + b3+ c3
– 3abc) = (a + b)3 – 3ab (a + b) + c3 – 3abc
= (x3
+ c3) – 3ab (x + c), where (a + b)= x
= (x
+ c)(x2 – xc + c2) – 3ab (x + c)
=
(x + c)[(x2 – xc + c2) – 3ab]
=
(a + b + c)[(a + b)2 – (a + b)c + c2 – 3ab]
=
(a + b + c)[a2 + 2ab + b2 – ac – bc + c2 –
3ab]
(a3 + b3+
c3 – 3abc) = ( a + b + c)(a2 + b2
+ c2 – ab – bc – ca)
10. If (a + b + c) = 0 ⇒ a3 + b3 + c3 = 3abc
Proof : We have
(a + b + c) = 0
(a + b) = – c
Cubing both sides
(a + b)3 =
(– c)3
a3
+ b3 + 3ab (a + b) = – c3
a3 + b3 + 3ab (– c)
= – c3
a3 + b3 – 3abc = – c3
a3 + b3 + c3
= 3abc
Comments
Post a Comment